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Appendix B: Interface of Collection (Version 2.2)

// The following two declarations are global.

typedef Object *(*ObjectFunc)(Object *, Object *anObject, void *);
typedef bool (*BoolFunc)(Object *, Object *, void *);

class Collection : public Object {
public:

int Size();
bool IsEmpty();

virtual Object *Find(Object *toFind);
virtual Object *FindPtr(Object *toFind);
virtual int OccurencesOf(Object *anObject);
virtual int OccurencesOfPtr(Object *anObject);
bool Contains(Object *anObject);
bool ContainsPtr(Object *anObject);

virtual Collection *Collect(ObjectFunc body, void *arguments= 0);
virtual Collection *Select(BoolFunc body, void *arguments= 0);
virtual Object *Detect(BoolFunc body, void *arguments= 0);

virtual Iterator *MakeIterator();

virtual Object *Add(Object *anElement);
virtual Object *Remove(Object *toRemove);
virtual Object *RemovePtr(Object *toRemove);
virtual void Empty(int aSizeHint);

};

class Iterator {
public:

virtual Object *operator()(); // yield operator
virtual void Reset();

};

Ex. B Interface of Collection and Iterator, Version 2.220

20 For version 3.0, the methods in bold face are still introduced by Collection, whereas the others are now defined by
Container.
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Appendix A: Excerpts from the ET++ Class Hierarchy

Version 2.2

Iterator
(subclasses not shown)

Object
Assoc
Collection

Bag
ObjArray
RunArray

TextRunArray
SeqCollection

OrdCollection
ObjList

SortedObjList
Set

Dictionary
IdDictionary

IdSet
ObjLink

Fig. A1 The ET++ Container Hierarchy, Version 2.2

(Abstract classes shown in bold face)

Version 3.0

Iterator
(subclasses not shown)

Object
Container

Collection
SeqCollection

ObjArray
OrdCollection
ObjList

SortedObjList
Set

IdSet
Dictionary

IdDictionary
ObjLink
RunArray

Fig. A2 The ET++ Container Hierarchy, version 3.0

(Abstract classes shown in bold face)
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Set

The most critical class with respect to the efficiency of robust iterators is the class Set which uses
linear probing as described. The interesting operation is the removal of an element. The time it
takes to remove all elements without an iterator was compared with the time it takes to remove all
elements using an iterator19. The experiment was arranged such that the elements are removed in
the same order for both cases. The measured relative overhead was always less than 100% and
approves the theoretical argument to follow.

The dominant operation that determines time complexity for an internal hashing scheme is the test
for equality. Time complexity is hence measured by the average number of tests taken by either a
succesful search (µ(α)) or an unsuccesful search (τ(α)). Time complexities are functions of the
load factor α. No distinction is made between the testing for a free slot and the very testing for
equality.

For linear probing, removing an element means that each element in the corresponding collision
chains is either tested for equality or for possibly hashing to the emptied slot. Assuming that both
operations approximatively have the same costs, the average complexity of a removal is equal to
the average complexity τ(α) of the unsuccesful search. When removing an element which an
iterator is currently referring to, the adjustment is accomplished by searching either the previous or
next element in the sequence order. Since this element is always found, the average complexity of
an adjustment is equal to the average complexity µ(α) of a succesful search. Thus, the relative
average overhead υ(α) of a removal with adjustment can be written as follows:

υ(α ) = µ(α )
τ(α ) .

The formulas for µ(α) and τ(α) are taken from the "Handbook of Algorithms and Data Structures"
[Gonnet91] and describe the asymptotic behaviour for the number of elements growing to infinity.
The graph of the function υ(α) is shown in figure  6.3.

1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6 0.8 1.00.0

1 − α

load factor α

αmax

µ(α)
τ(α) = υ(α)

αmin

Fig. 6.3 Relative Overhead υ(α) for a Removal With Adjustment

19 This is the situation of example 4.1.
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However, black-box-testing cannot detect methods that are never used. Several methods of
SeqCollection are implemented such that they are perfectly valid and usable, for instance. But both
its derived classes OrdCollection and ObjList override them for efficiency. These methods of
SeqCollection are therefore never executed. They can be called dead methods.

It is not very difficult to find dead methods by inspecting the code, but testing them is more
troublesome. Temporary modifications of the code are ruled out. Testing dead methods using the
scope operator :: introduces implementation-dependencies in the testing code, so the only clean
solution is derive an additional, concrete18 class that implements the primitive methods only. Since
this is not free,  I did not test dead methods.

Is the presence of dead methods an indicator for a doubtful implementation? This can be answered
with yes or no. There is a conflict between desirable properties of an implementation. On one side,
there should be no code which is never executed. Thus, the methods in question should be treated
as though they were abstract. On the other side, they provide a default implementation and hence
allow the client to derive a new class with a minimal effort. Moreover, a dead method documents
the semantics of the operation in terms of other operations of the class.

It is not surprising that the total size of the testing software consists of about 1500 LOCs. This
reflects the well-kown fact that serious testing takes a considerable fraction of the total work. Some
of the code could be reused for the benchmark programs.

6.3 Benchmarks

The developped benchmarks were built to compare the performance between version 2.2 and 3.0
on one side. On the other side, the benchmarks also had to show that the concept of robust iteration
as proposed is feasible in terms of the incurring run-time overhead.

The benchmarks showed that the costs of adjusting one iterator is always smaller than the costs of
the operation causing the adjustment. As the most important result, this is even true for the
proposed approach (Variant A) for linear probing.

6.3.1 Comparison between version 2.2 and 3.0

As the most interesting difference, the new implementation of the Dictionary class is three times
faster on modifications than the old one. There are two reasons which equally contribute to the
speed gain:
1. Since the new implementation does not use Association objects, but stores the keys and the

values in an array with two columns, only one virtual function call instead of two is now
needed to compute the hash value of a key or test two keys for equalness.

2. Inserting a key-value pair required the dynamic allocation of an Association object, and
removing a key-value pair required the dynamic deallocation of its Association object.

For the other classes, the differences are small and not worth reporting.

6.3.2 Feasability of the Adjustment Approach

OrdCollection

For the class OrdCollection, inserting an new object such that the gap does not need to be moved is
the fastest operation. The measurements show that the relative overhead incurring by one active
iterator is 50% for this case. Note that this is the worst relative overhead.

ObjList

The nodes of the doubly-linked list are allocated and deallocated by the standard memory allocator
used almost everywhere in the ET++ library. Since the deallocation of a node takes so much time
in comparison to the iterator adjustment, the relative overhead is vanishing to zero.

18 An abstract class cannot be tested because it cannot be instantiated.
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Object *TCollection::TestAdd(Collection *cp, Object *anElement)
{

Enter("TestAdd"); // for tracing the flow of control w/o a debugger
Object *notAccepted;
int oldSize;

oldSize= cp->Size();
notAccepted= this->Add(cp, anElement);
if ( notAccepted != 0 )

Error(1, "Add must not fail", anElement);
if ( oldSize + 1 != cp->Size() )

Error(2, "size incorrect", anElement);
return notAccepted;

}

Ex. 6.1a Checking for Postconditions of the Add operation

This approach has advantages. First, the class construct is used to compensate for the lacking
support of modules. Second, code that checks for the violation of postconditions and class
invariants can be implemented as methods in the corresponding testing class. A derived classes
inherits these methods and can easily use them. A method checking for a class invariant can also be
overridden in a derived class. The overidden method first invokes the inherited method and then
checks for the stronger postcondition. Code examples 6.1a and 6.1b show how checking for the
postconditions of operation Add could have been implemented. The true code for TestAdd is
acctually more complicated, however.

void TSeqCollection::TestAdd(Collection *cp, Object *anElement)
{

Enter("TestAdd");
SeqCollection *sp;
Object *notAccepted;
int oldLastIndex, lastIndex;

sp= Guard(cp, SeqCollection);
oldLastIndex= sp->LastIndex();
notAccepted= Collection::TestAdd(cp, anElement);
lastIndex= sp->LastIndex();
if ( oldLastIndex + 1 != lastIndex() )

Error(1, "lastIndex incorrect");
if ( sp->At(lastIndex) != anElement )

Error(2, "wrong element at last index");
return notAccepted;

}

Ex. 6.1b Checking for the Stronger Postconditions of the Derived Class SeqCollection

Some principles were followed while developping the testing classes. The first principle says that
test cases are not input from an external data source, e.g. a file. Feeding test cases from an external
data source would considerably complicate the testing code because it involves parsing and
conversion of the data representing the test cases. The testing classes generate them, and only
report on differences between predicted and eventual results. As a second principle, the code under
test must not be modified because this requires some organizational efforts and may introduce new
programming errors. Third, I decided not to employ any white-box-testing. Conducting a test suite
relying only on black-box-testing is more valuable because the test suite is completely independent
of the implementation. This is especially important for regression tests.
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Container

Collection

Seq
Collection

Set

Dictionary

Ord
Collection

ObjList

HashTable

Robust
HashTable

Dictionary
HashTable

is derived from

uses

Fig. 6.1 Data Type and Data Structure Hierarchies (Version 3.0)

In the course of eliminating the inheritance relationship between the classes Set and Dictionary,
separate hashing classes were built to factor out the common implementation. This distinction
between data structure classes (HashTable etc.) and data type classes (Set, Dictionary) which use
data structure classes is an organization principle widely agreed on. See figure  6.1 for the
relationships between the resulting hierarchies. The amount of code is shown in figure  6.2.

Class .C file .h file Total
Iterator 148 79 227

Container 259 168 427

Collection 195 60 255

SeqCollection 264 84 348

OrdCollection 465 109 574

ObjList 493 125 618

SortedOList 85 41 126

Set 281 84 365

Dictionary 295 113 408

HashTable 372 103 475

RobustHashTable 160 61 221

DictionaryHashTable 199 50 249

Total 3216 1077 4293

Fig. 6.2 Code Size of the Container Classes (Version 3.0) in Lines Of Code

The class OrdCollection now uses a so-called gap. When a sequence of modifying operations
exposes some locality of reference, less data must be moved around.

As an add-on, the class SkipList has been built to implement the skip list algorithm [Pugh90].
Skiplist is derived from SeqCollection and supports that interface, except for insertions at a specific
position. The class Skiplist provides robust iterators based on the adjustment approach.

6.2 Testing

This section sketches how the container classes were tested. Since testing is not the very subject of
this paper, most details and many interesting issues in this context are omitted.

The container classes were thouroughly tested using a set of test classes whose hierarchy parallels
the container classes' hierarchy. For each container subtype, there is a corresponding testing class
dealing with the pecularities of that subtype.
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5.4 Objective-C and Dee

In the Objective-C library, there is no attempt to offer a solution to the problem. Cox writes in
[Cox87:227-228]: "For effiency reasons, many collection classes assume the collection will not be
changed while enumeration is occuring. (...) A safer implementation would be to pass the sequence
a copy of the array, but this decreases performance to the point that the way enumeration is
implemented across diverse collections could not be kept hidden from performance-conscious
programmers."

Grogono who presented an object-oriented language called Dee considers the modification of an
container while being iterated on as poor programming practice, hence denies the need of robust
iterators. There are even no attempts to detect such cases [Grogono91:11-12].

5.5 Non-Objected-Oriented Languages

CLU

The designers of CLU, Liskov and Guttag, devote a quite interesting discussion on this issue (see
[Liskow86:127-128]), but they conclude that it is not possible to provide robust iteration. As an
answer to the question, they state that there is usually no need for robust iteration. Finally, they
recommend that the client programmer should avoid modifications during iteration.

SETL

SETL [Schwartz75] is a very high level language dealing with sets and tuples. SETL offers
iterators which are very similar to iterators in CLU. In contrast to CLU, iterators are naturally
robust in SETL because the language has strict value semantics.

6 Implementing, Testing, and Evaluating the Improved
Container Classes

This chapter highlights the most important details about the implementation of the improved
containers as found in version 3.0 of ET++. This includes testing. Finally, benchmark results are
reported.

6.1 Implementation

The implementation of the new iterators required substantial changes, so I decided to re-implement
all concerned container classes from scratch. At this occasion, these classes were also improved in
other respects: The protocols are now more consistent, and due to the extensive testing, the classes
can be also said to be more reliable. Nevertheless, I tried to maintain compatibility to the container
classes of version 2.2 as much as possible. When integrating the reworked container classes into
the ET++ core library, only a few changes in the client code were necessary.

In version 3.0, a new class Container was introduced. As the most important reason, the inheritance
relation between Set and Dictionary was to be eliminated: Dictionary should not be a subclass of
Set (and therefore a Collection) because the relevant protocol of Dictionary is not consistent with
the definition of Collection's protocol. As a further advantage, the Dictionary of version 3.0 does
not use Associations, so the client is freed from dealing with Association objects. Finally, the new
approach is more efficient in terms of memory usage and speed. The class Container defines the
protocol common to Collections and Dictionaries and also allows to localize the implementation of
the iterator registration mechanism.
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CorrectMeetings(List<Date> *meetings)
{

Date *ad, *bd;

meetings->First();
while ( ! meetings->Offright() ) {

ad= meetings->Value();
if ( ad->DayOfWeek() == cThursday ) {

meetings->Mark();
meetings->First();
while ( ! meetings->Offright() ) {

bd= meetings->Value();
if ( bd->DayOfWeek() == cWednesday && bd->Compare(ad) < 0 )

meetings->Delete();
else

meetings->Forth();
}
meetings->Return();

}
meetings->Forth();

}
}

Ex. 5.6 Problem for an Eiffel List: Two Iterations and Modifications (Code in C++)

The problem is that the definition of List forbids modifications if there are pushed cursors. This is
stated as a pre-condition (called require clause in Eiffel) for the Return operation. The example is
hence illegal according to the definition of List. Since the violation of a pre-condition itself has no
effect in Eiffel, the example would not crash. The code even works here because the pushed cursor
is not affected by the removals. This is not the case when an element is removed that is currently
referenced to by a pushed cursor. Note that the "correctness" of the code was to be manually
derived.

5.3.3 Discussion

The cursor approach has the following problems:

• An iteration pass is required to explicitly invoke all three fundamental operations as
described in 4.2. This flexibility is not needed in general. In contrary, it leads to bulky code
compared to an iterator with an atomic yield operation.

• Pushing and popping cursors is error-prone. Since an operation during an iteration can
trigger another nested iteration on the same container, such programming mistakes may be
hard to find.

• The iteration facility is robust only when there are no pushed cursors. It requires a prove of
correctness.

The adjustment approach as proposed in this paper is amenable to the Eiffel cursor concept. To
provide an atomic counterpart to the yield operation of an ET++ iterator would be easy, too. Last
but not least, exploiting the compiler-generated destruction of automatic variables as done in the
Iter construct would be helpful for popping cursors.

However, the major flaw of the cursor concept cannot be alleviated. As long as an iteration device
is part of its container, programming nested or interleaved iterations is tedious and difficult to
understand for the reader. The cursor concept is hence of limited value.
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void PrintAgendaOn(List<Date> *meetings, ostream *file)
{

Date *aDate;

meetings->First();
while ( ! meetings->Offright() );

aDate= meetings->Value(); // no down-cast - List is generic
aDate->PrintAsStringOn(file);
meetings->Forth();

}
}

Ex. 5.4 Iterating through a Eiffel List (Code in C++)

An Eiffel list easily allows for simultaneous iteration and removals, as shown in example 6.5.
Since the library also offers single-linked lists, a removal moves the cursor to the next list node.
This is post-increment behaviour (see 4.2 for more).

void CancelMondays(List<Date> *meetings)
{

Date *aDate;

meetings->First();
while ( ! meetings->Offright() ) {

aDate= meetings->Value();
if ( aDate->DayOfWeek() == cMonday )

meetings->Delete(); // moves cursor to next element
}

}

Ex. 5.5 Simultaneous Iterating and Removing for a Eiffel List (Code in C++)

5.3.2 The Problem of The Cursor Approach

As long as there is only one active iteration, everything works fine. But two simultaneous iterations
pose problems because a list has only one cursor. An Eiffel list now allows for pushing the cursor
on an internal stack by the public operation Mark and for popping it from the stack by Return.
Consider the code in example 6.6 for the date/meetings example used throughout this paper: If
there is a meeting on wednesday, cancel all meetings on thursday earlier than the meeting at
wednesday. It is not assumed that the list is sorted on the dates.
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5.2 Smalltalk

In Smalltalk-80, internal iterators are used more often than Streams which correspond more or less
to external iterators in my terminology. However, Smalltalk streams base on a slightly different
approach.

Smalltalk-80 does not offer something like robust iterators. The problem exists, but it is obviously
not viewed as very important. "The programmer has to be aware of that problem and has to avoid
such situations", says Ralph Johnson [Johnson91]. Lalonde and Pugh write in [Lalonde90:384]:
"Users should not be attempting to modify collections while in the process of sequencing through
their elements - the results can be unpredictable because the bounds of the loop are generally
computed at the start of the loop - not every time through."

When the problem arises, Smalltalk programmers often copy the collection to be iterated over. The
main reason why copying the container is not feasible for C++ libraries is the lack of automatic
garbage collection. This issue is discussed in 3.3.

5.3 Eiffel

The Eiffel library as described in [Meyer88] offers containers which have no iterators. What comes
close to an iterator is the cursor concept found in the list classes17. The cursor concept as realized
in the Eiffel library allows only limited robust iteration. This section presents the concept and its
implications in great detail. The reader is invited to compare this section with chapter 3. Note that
the examples are coded in C++.

5.3.1 The Cursor Approach

A cursor is part of a list and stores a current position. Removals and insertions are done relative to
the cursor. Moving the cursor to a position by the operations Go(int) or Search(Object *) allows to
specify where the object is to be inserted. Operations relating to the cursor (and hence to modifying
operations) are tabulated in example 5.3.

void List::Insert_Right(<ObjectType> *anObject);
// inserts anObject right to the cursor, but does not move the cursor

void List::Delete();
// removes the element pointed to by the cursor and moves the cursor
// to the next element in the list

void List::First(); // sets cursor set to first element
void List::Forth(); // sets cursor set to next element in the list
bool List::Offright(); // is cursor after the last element?
void List::Mark(); // pushes cursor onto an internal stack
void List::Return(); // pops cursor from the internal stack

Ex. 5.3 Eiffel List Operations (denoted in C++)

Since there is no operation that corresponds to the atomic yield operation (operator()) of an ET++
iterator, an iteration through a list must always invoke three operations: the EOS test (Offright in
example 5.4), the get operation (Value) and an increment operation (Forth).

17 The library also offers trees which are considered to be nested lists.
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Fig. 5.1 Direct Chaining

5.1.1.1 Discussion

This implementation is not optimal. First, there is an absolutely unnecessary overhead by
referencing the hash table in every list node. Second, an iteration over the whole table costs as
many hash address computations as there are non-empty buckets.

The list nodes are assigned the responsibility to determine the next node because this saves a little
bit of code: all containers in the library are composed of abstract nodes that can be asked for their
previous and next nodes. Thus, there is only one implementation needed for the iterator's base
functionality.

Even if this approach is considered as reasonable, the implementation can still considerably be
improved. The list nodes at the end of the chaining list simply have to point to the first list node of
the next bucket15. For each bucket, a counter stores the number of list nodes currently associated to
this bucket. Thus, the pointer to the hash table in every node gets superflous, and iterating through
the table no longer costs any computations of hash adresses16. Note that the requirement of never
rehashing the table is still valid.
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1

1 A

0

2

2

3

1

4

B D

E

0

0

Fig. 5.2 Improving Direct Chaining in Container 2.0

15 This is true for singly- and doubly-linked lists. The implementation as found in the library uses doubly-linked lists,
because a "navigator" object offering the iteration functionality can also yield an element preceding the current.

16 It is assumed that efficient iteration has highest priority.
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void PrintAgendaOn(Collection *meetings, ostream *file)
{
Date *aDate;
Iterator it(*meetings);

while ( aDate= (Date *) it++ )
aDate->PrintAsStringOn(file);

Ex. 5.2a Using an External Iterator in NIHCL

An alternative, but equivalent formulation of the iteration loop is shown in example 5.2b.

while ( it++ )
((Date *) it())->PrintAsStringOn(file);

Ex. 5.2b An Alternative Formulation Using operator++ and operator()

Iterators in NIHCL are not robust in any way. Although an iterator lets its collection do all the
work, a collection does not even count its iterators. Counting the active iterators is very
inexepensive and allows to issue an error message in critical situations, so the client would be
informed at least.

The authors suggest to copy the collection as a remedy [Gorlen90:155]: "It is a dangerous practice
to add objects or to remove objects from a container while iterating through the container, because
the order of the objects in the container may change. ... One correct way of programming this
problem is to iterate through a copy of the container while modifying the original, ..."

Note that it only takes a few lines for the operator(), but its presence prohibits the later provision of
robust removals.

For the library of container and iterator classes supplied as a supplement to Borland's C++
compiler [Borland91], all statements made for NIHCL apply accordingly.

5.1.2 Container 2.0

Except for ET++ and MacApp 3.0, this C++ library is the only container class library I currently
know which offers robust iterators. Container 2.0 [Glocken90] offers a Set class based on a hashing
algorithm. This section shows how the library implements robust iterators for hash tables.

Like in ET++, this library also uses an adjustment approach. The hashing scheme employed is
direct chaining. The nodes of the doubly-linked list are dynamically allocated, and a new node is
always appended to the chaining list. A simplified example is shown in figure  5.1.

The crucial assumption is now that the hash table is never rehashed, so the bucket which an
element is hashed to never changes, and the sequence order of the chaining lists never changes, too.
Thus, a robust iterator is to be adjusted to the previous14 list node only if the node currently pointed
to by the iterator is removed.

An iterator increments or adjusts its position by asking a list node for the next node. Since the last
node of a chaining list points to null, every list node must additionally refer to the hash table. The
hash table is needed to locate the bucket the last node belongs to, and then to locate the first node
in the next non-empty bucket.

14 or to the next node node when postincrement iteration is prescribed
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The idea behind copying approaches is to provide the iterator with a private, shallow copy of the
container. Since there is no automatic garbage collection, the iterator possibly yields pointers that
are no more valid. Such an invalid pointer referred to an object that has been deleted meanwhile.
This is disastrous. In a language with automatic garbage collection (e.g. Smalltalk), copying the
container is suitable as long the incurring overhead is small, i.e. the container has only few
elements.

As a refinement which would improve run-time efficiency, the copying is done only when needed.
It is triggered by the first modification that affects active iterators. A further optimization would
consist of an mechanism that allows for sharing of copies where possible.

Another idea is to delay modifications. It is done by keeping track of the operation requests until
they can be really executed on the data structure. However, it suffers from the same problem as
copying the container when no automatic garbage collection is present. Furthermore, it is difficult
to define semantics that can be implemented in a reasonably effficient way13. This is especially
true if an arbitrary number of iterators on the same container must be possible.

For a system without automatic garbage collection, copying and delaying are safe only if none the
removed elements are deleted. Since this again requires some prove by the programmer, the
arguments of chapter 3 apply here accordingly.

5 Other Systems and Libraries

This chapter takes a closer look at other object-oriented libraries. It reports on how these libraries
treat the problem of simultaneous iteration and modification. The non-object-oriented languages
SETL and CLU which provide internal iterators are also investigated. All code examples refer to
the example class Date introduced in chapter 2.

More general discussions addressing design and implementation of containers in C++ can be found
in a paper by Lea [Lea88] and also in [Budd91]. The latter also includes a chapter on the container
classes of Smalltalk-80.

5.1 C++ Class Libraries

Since ET++ is written in C++, other object-oriented libraries written for this language deserve
special interest.

5.1.1 NIHCL and Borland

The NIHCL library [Gorlen87, Gorlen90] is a C++ library that also provides a rich set of container
classes. They are conceptually very close to those of ET++. An interesting difference concerns the
interface of the external iterator. In NIHCL, the class Iterator provides two operations:

virtual Object *Iterator::operator++(); // yield operator
virtual Object *Iterator::operator()(); // get current element

Ex. 5.1 Interface of Iterator in NIHCL

The yield operator causes the iterator to remember the element most recently returned. This
element can be asked for by operator(). The yield operator indicates the end of iteration by
returning null. How an iterator is used, is shown in example 5.2a.

13 Delaying and copying approaches can be said to implement simple transaction mechanisms.
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Separate Doubly-Linked List

Here, the removal of list elements makes no problems since the references to a list node can be
updated without any problems. Obviously, this data structure uses the largest amount of memory
per element. Again, the indirection is costly. As an advantage, the separate doubly-linked list is
relatively simple to implement. It can be also easily combined with ObjList.

0 1 2 3 4

E

Hash Table

Sequence List

B D

Fig. 4.10 Separate Doubly-Linked List

4.4.4.5 Implementation Details of Registration and Adjustment

The adjustment approach implies that a container must be able to access all its active iterators.
Therefore, it maintains a doubly linked list whose nodes are the active iterators themselves.
Registering an iterator means inserting it into the list, and unregistering an iterator means removing
it from the list. With this kind of organization, the overhead is kept to a minimum.

Methods which have to adjust the active iterators use a special-purpose iterator, much like the
ForEach construct described in 2.2.5. For each active iterator, the notification operation is invoked,
so that the iterator may adjust its variables when needed. Example 4.2 illustrates this for the class
ObjList.

void ObjList::RemoveLink(ObjLink *link)
{

if ( this->HasIterators() )
ForEachIterDo(ObjListIter, OnRemove(link));

link->previous->next= link->next;
link->next->previous= link->previous;

}

void ObjListIter::OnRemove(ObjLink *link)
{

// this method is protected
if ( this->currentlink == link )

this->currentlink= this->currentlink->previous;
}

Ex. 4.2 Notifying an Iterator for Adjustment

4.5 Copying and Delaying Approaches

This section briefly discusses two other approaches for providing robust iterators. Both are
considered as not suitable in the context of C++ because the language lacks of automatic garbage
collection.
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Fig. 4.7 Singe-Linked List

Shifted Single-Linked List

This variant is similar to the single-linked list. As major difference, the pointer to the object is not
stored in the list node pointed to by the slot entry but in the next node. This structure could also be
called a single-linked circular list with list elements shifted forward by one. Thus, a list node can
be removed from the list without going through the whole list until its previous node is found.
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Fig. 4.8 Shifted Singe-Linked List
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Fig. 4.9 Problem with Shifted Single-Linked List

But there is a problem with this structure that makes it relatively unattractive. Figure 4.9 shows a
situation where the object "D" shall be removed. Since the reference "to E" must point to the node
previously referred to by "to D", the hash table must be searched for "E" to update the reference "to
E", too. This means that every removal requires an additional succesful search operation. This is
the first, less important reason, because variant A also needs one additional succesful search at
least. The more important argument not to choose the shifted single-linked list is the double
indirection. Access times are more than doubled here. Moreover, this solution is relatively difficult
to implement.
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Fig. 4.5 Integrated Doubly Linked Sequence List

Arrayed Sequence List

Defining a sequence order with an separate array is straightforward and relatively simple, but has a
serious problem: If both insertion and removal frequencies are high, the whole structure has to be
frequently rebuilt in order to eliminate the holes in the sequence list array. Due to this external
fragmentation effect, this organization is quite unattractive.

The potential advantages of that organization is the modest memory consumption if removals are
rare. The indirection costs cpu time, however. I found for my particular environment that the
indirection nearly doubles the time to access an element.
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Fig. 4.6 Arrayed Sequence List

Single-Linked List

The first variant for separate lists is the single-linked sequence list. If an element is removed, its list
node will not immediately be removed, but the pointer to the element is set to null. It is not
possible to immediately remove the list node. If the number of list nodes pointing to null has
reached a certain level, the positions of all iterators are forwarded to a list node not pointing to null.
Then the list is traversed right from the beginning, and all list nodes pointing to null will be
removed.

Although this variant uses the least amount of memory, it makes not much sense, since high
modificational activity will require quite frequent traversing of the list. As for the arrayed sequence
list, the indirection doubles the time to access an element.
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Variant C - Immediate Adjustment

In this variant, an active iterator does not remember any element. When the element to be removed
is actually removed, all iterators are notified so each of them can determine whether it should set its
position to the previous element. This is done by passing the position of the element to be removed,
so an iterator can compare it with its own position. Afterwards, the collision chain will be fixed.
For each element to be relocated, all active iterators are notified again. This time, they receive the
old and the new position of the relocated element.

Comparison of the Variants

For all variants, the overall costs of the adjustment are proportional to the numbers of active
iterators. Thus, it is sufficient to discuss the case of one active iterator.

In variant A, the cost of the adjustment is that of a succesful search if the iterator does not refer to
the element about to be removed. If the iterator refers to the element to be removed, however, an
unsuccesful search and a succesful search are done. Although it might seem a statistically rare case,
unfortunately, it is not. A common application of robust iterators is to remove the element which
the iterator has just yielded, as shown in example 4.1.

void CancelMondays(Collection *meetings)
{

Iter next(meetings);
Date *aDate;

while ( aDate= Guard(next(), Date) ) {
if ( aDate->DayOfWeek() == cMonday )

meetings->Remove(aDate);
}

}

Ex. 4.1 A Common Application of Robust Iteration

Variant B is clearly better than A because it always needs only one search. Variant B and C impose
comparable costs. Since the operations "remember the current element" and "reset position" are
also applicable for insertions, variant B is the best choice. It is more efficient than A, and is simpler
to implement than C.

Note that the overhead of all variants depends on the costs of searching, and therefore on the
current load factor. Thus, the maximal load factor also determines the smallest upper bound for the
average costs of an adjustment.

4.4.4.4 Variations of the Sequence List

This section shows first the solution I decided to implement. Other variants using a separaated
sequence list are presented and discussed afterwards. Note that the list nodes may be allocated from
an array whose capacity is determined by the maximal number of elements in the hash table.

Integrated Doubly-Linked List

The figure  4.5 shows how the hash table and the sequence list as a doubly-linked list is organized.
Each entry of the table consists of the pointer to the object and link to the previous (prv) and to the
next slot (nxt). In order to keep the figure simple, the pointer to the objects and the objects
themselves are denoted with "A", "B", "C" etc. The rightmost slot of the table does not really
belong to the table, but it is the head node of the list. All lists used have an head node since it
makes the code for insertion and removal of elements simpler and thus more efficient.

I favour this solution because no indirection occurs, and because immediate removals are possible
without additional costs. The gross memory consumption is greater than in the linked-list
variations. I decided to implement this solution.
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Coalesced hashing [Vitter87] needs no dynamic allocation of memory, but uses for each slot an
extra link into the table. Coalesced hashing has excellent performance characteristics. Immediate
removals that preserve randomness are possible, but require additional information to be stored in
each slot except for the case of standard coalesced hashing which uses no cellar [Vitter87:114].
Standard coalesced hashing is clearly inferior to the variants with cellar. For the comparison to
follow, I now assume that a (fictivous) coalesced hashing scheme with cellar exists that does not
need extra links to allow for immediate removals.

Comparing VISCH (which is the best variant of coalesced hashing) and linear probing for the
number elements growing to infinity shows that the average number of comparisons for linear
probing is always smaller than 1.5 times the corresponding number of VISCH with the load factor
doubled. A load factor of some α means that the hash table for linear probing occupying the same
amount of memory has a load factor of α/2, because in my case, both link and key are pointers and
have the same size. Since I assumed that VISCH need no extra links, linear probing is here the
better algorithm. It also seems to be simpler to implement than variants of coalesced hashing.

It is worth to note that many class libaries comparable with ET++ also use linear probing. This is
the case for the NIHCL library, and Smalltalk [ParcPlace89, ParcPlace90]. Unfortunately, their
designers did not document their considerations on this particular question.

4.4.4.2 Adjustments during an Insertion

Insertions that cause no growth do not need special attention. The element is simply inserted into
the hash table and into the sequence list. Every active iterator will yield that element unless it has
been removed meanwhile.

If the table grows during an insertion, all active iterators are notified to remember the element they
currently point to. In terms of the semantic model, this is the element most recently yielded. It is
guaranteed that there is such an element, because an iterator only gets active upon the first yield
request. After the table growth is done, all active iterators may determine their position in the new
hash table by searching the remembered element.

4.4.4.3 Adjustments during a Removal

When using an integrated sequence list, immediately fixing the collision chain requires to
distuinguish between the three following cases:
a) An iterator points to the element about to be removed
b) An iterator points to an element going to be relocated during the fixing of the collision

chain.
c) An iterator points to an element whose position is not changed.

There are three variants to handle these cases.

Variant A - Remembering Two Elements

All active iterators are notified to remember the current element before the operation actually takes
place. Unlike for insertions, an active iterator also remembers the element previous to the current
one. If the current element is the element about to be removed, the previous element is used to
determine the iterator's position after the operation has taken place. If the search for the
remembered element fails, then this element has been removed, and the previous element is
searched. It is possible that the current element is the first element, so there is no previous element.
This means that the iterator's position will be set to the initial position where no element is stored.
This variant also works, when the element next to the current element is remembered instead of the
previous one.

Variant B - Remembering One Element

The notification of an active iterator include passing it either the element about to be removed, or a
value (e.g. an index or a pointer) that refers to the element's location in the data structure. By
means of this value, the operation handling the notification can decide whether to remember the
current or the previous element. Once the removal is done, the iterator is notified again. It then
determines its possibly new position by searching the remembered element.
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of robust iterators proposed, but also for the abstractness of the construct itself. See also section 5.3
on the Eiffel library.

4.4.2 The Adjustement Approach for OrdCollection

An iterator operating on an OrdCollection uses an index to describe its current position. If an
element is inserted at an index less or equal to the iterator's current position, all the elements after
that element are shifted up by one. In order to be consistent, the iterator's index must be
incremented by one. Analogously, removals are treated. If the index of the element to be removed
is less or equal to the iterator's index, the latter must be decremented by one.

4.4.3 The Adjustment Approach for ObjList

Some remarks have already been made in 4.3.2. An iterator on a doubly-linked list stores a pointer
to the current element's list node. Like all other container iterators in version 3.0, it operates in
preincrement fashion. Using an head node11 which terminates the list at both ends makes that easy.
The pointer describing the iterator's position must be updated only if it points to the node of the
element about to be removed. In all other cases, nothing must be done.

4.4.4 The Adjustment Approach for Set

The class Set was required to use a hashing algorithm for its implementation, but also to provide
robust iteration without any restrictions. So, section 4.4.4.1 gives an overview on existing hashing
schemes, and shows why linear probing was chosen again. An independent sequence list is then
needed to guarantee a stable sequence order. 4.4.4.2 and 4.4.4.3 present the algorithms as far it
concerns robust iteration, and 4.4.4.4 presents different possibilities for the sequence list.

4.4.4.1 Linear Probing versus Other Hash Algorithms

Two categories of hashing schemes exist. They differ in how collisions are handled. Open-
addressing schemes compute alternative hash addresses, whereas chaining schemes link all
elements which hash to a particular address in a chain. The class of chaining schemes can be
further divided into the subcategories of direct chaining (which is supposed to include separate
chaining) and coalesced hashing. The class of open-address hashing schemes includes, amongst
others, linear probing, quadratic probing and double-hashing. A compilation covering all the
mentioned schemes and more is found in [Gonnet91].

"Comparisons between hashing algorithms in different classes are often difficult, (...), because each
class has its own assumptions, storage requirements, and tradeoffs." [Vitter87:89]. In order to
choose an appropriate hashing scheme, the following points were to be considered. First, an
implementation supporting robust iterators must be feasible and reasonably efficient. Second, it
must be possible to grow or shrink the hash table to an arbitrary size by rehashing the whole table.
Finally, the scheme must avoid contamination even in the worst cases. Thus, the hashing scheme
must allow for immediate removals.

Linear probing is the only open-addressing scheme that allows for immediate removals
[Knuth73b]. It is therefore the only candidate within its category12.

Direct chaining has some advantages. It is simple to implement, and it allows for immediate
removals. However, performance characteristics are not convincing when comparing it with other
schemes on the base of gross memory consumption.

11 See also Knuth [Knuth73a].

12 As a further argument, linear probing can be very easily abstracted because it operates on an array-like data
structure. My abstract algorithm for the robust hash table needs only four primitives to be implemented in a
concrete derivation.
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sequence number. Afterwards, the iterator's current sequence number becomes the sequence
number of the yielded element. Figure 4.4b shows the resulting sequence for two iterators. The
modifications of the container are the same as in figure 4.4a.

Note that the iterator's current sequence number does not need to be in A when a yield operation is
invoked. In this case, the most recently yielded element has been removed meanwhile. If there is
no more sequence number less than one, then there are no more elements, and the iterator
terminates.

c

c

c

a

a

a

a

0 1.00.50.25 0.75

b

b
iterator 1

iterator 2
b'

x

yields element x

Fig 4.4b Two Iterators and their Sequence Order

Because unordered collections like Sets do not have either an explicit or implicit sequence order,
an artificial one is defined. An element is always inserted such that its sequence number is greater
than all other numbers in A or D. Such a sequence order reflects the time of insertions. Weaker
definitions would also be sufficient, however.

4.4.1.2 Design Considerations

This semantic model clearly prescribes preincrement yielding. This is not visible at the interface of
the iterator class, however, until the semantics of yielding is viewed in conjunction with
simultaneous modifications of the underlying container. To decide on preincrement yielding is
somewhat arbitrary. There are two arguments against preincrement yielding. First, programmers
usually code loops in postincrement style, so postincrement yielding seems to be more natural.
Second, preincrement yielding means for linked data structures like linked lists that, when
removing an element which is currently referred to by an iterator, the iterator must refer to the
predecessing element afterwards. When there is no backward reference, this can be expensive.

Moreover, the semantic model prescribes late termination. This is an somewhat arbitrary decision
as well. Late termination is more powerful than early termination and could be exploited by the
conscious programmer, although this is not particularly important because robust iteration has been
devised for other reasons.

Both variants, however, may lead to infinite loops when the programmer is not aware of what may
happen in complex situations. Contrary to the situation as discussed in chapter 3, this is not a
problem in practice. I decided to use late termination.

Note that the yield operation is the only relevant operation of an iterator. This abstraction of the
flow of control is atomic. The atomicity of the yield operation is not only a prerequisite for the kind
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4.4 Version 3.0 - The Adjustment Approach

The adjustment approach is based on the idea that the controlling variables of an iterator can be
adjusted when necessary. Adjustment allows for insertions during an iteration, and also allows for
immediate removals, in constrast to lazy removals as applied in the place holder approach.

4.4.1 A Semantic Model of Robust Iteration

In version 2.2, there was no abstract model that prescribed the behaviour of robust iterators. As
long as no insertions are allowed during iteration, such a model is not that important. But as soon
as insertions are allowed, a model is needed such that all iterators behave in the same way.
Otherwise, the client has to distuingish between slightly different behaviours. This hampers
substitutability.

4.4.1.1 Formal Description

The semantic model describes the relationship between the sequence order and the effects of
insertion and removal operations. The sequence order is the order of the objects as yielded by an
iterator.

The sequence order is described by a set A of sequence numbers αi and a bijective mapping φ
between these numbers and the elements ci of the container C. The elements of A are in the open
interval (0, 1] of the real numbers. The image of 1, i.e. φ(1), can be seen as an special object which
is interpreted as end of sequence. Initially, A is { 1 }. There is another set D of used sequence
numbers δj being subset of the interval (0, 1). D's elements have been mapped to elements of C
which have been removed meanwhile.

If an object p is inserted into C, it receives a sequence number π that is neither in A or D. If there is
an element c with sequence number γ in C that immediately follows p, then π is less than γ but
greater than all sequence numbers in A or D which are less than γ. Accordingly, if p immediately
follows c, π is smaller than the successor of γ in A, but greater than all sequence numbers in A or D
which are smaller than the successor of γ. If p becomes the last element of the sequence, π is
greater than all numbers in A or D.

To say it in other words: The assignment of a sequence number π is always relative to the sequence
number γ in A that will follow π after the insertion of p, and π is the "closest" number in the half
left to γ. Figure 4.4a illustrates the assignment of sequence numbers with an example.
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Fig. 4.4a Example for Assignment of Sequence Numbers

Initially, an iterator's current sequence number is 0. Upon a yield request, the element of C is
returned whose sequence number is the least number in A being greater than the iterator's current
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4.3.3 The Place Holder Approach for Set

The class Set implements its behaviour using open-address hashing with linear probing. Why linear
probing was chosen is explained in 4.4.4.1.

For all open-address hashing schemes, a table rehash is needed if the number of elements exceeds
some boundary which is a constant fraction8 of the table size. This is done by allocating a new
table of a greater or smaller size. After that, all elements are inserted into that table. Finally, the old
table is deallocated.

Growing the hash table is essential because the performance dramatically decreases if the load
factor approaches one, i.e. the table becomes nearly full. Shrinking the table is also important to
avoid wasting memory. Of course, the table rehashing is transparent to the client.

When there are no active iterators, removals and insertions are immediately done, and the resulting
number of elements is checked against the upper and lower bounds of the table size during these
operations. When there are active iterators, the remove operation replaces the element to be
removed by a place holder. This is necessary because otherwise, the fixing of the collision chain
would possibly relocate elements that are currently pointed to by an iterator.

Insertions are considered illegal if there are active iterators. But as long the table is not rehashed,
insertions would be possible. It could not be guaranteed, however, whether a newly inserted
element would be yielded by an iterator. But if the table is rehashed, every element is going to be
stored in another slot. Thus, the sequences of elements in the old and the new table are totally
different. This would have the effect that some elements are yielded twice, and other elements are
not yielded at all. This is unacceptable, and insertions are trapped if iterators are active.

The intertwining of iteration and growth behaviour is undesirable. Iterators that never terminate do
prevent from ever cleaning up the table or doing a table rehash. The most likely reason for such
cases are active iterators that the client forgets to delete. If the Iter class is consequently used,
iterators will be virtually never forgotten because they are automatically deleted, but the client is
free to not use the Iter class. The implementation even created a place holder object for each
removed element, so the waste of memory could be considerable.

4.3.4 Analysis

Eventually, for every removed element, a new place holder was created. This is unneccesary, hence
a waste of memory and cpu time9, because for ObjList and OrdCollection, sharing one such object
is enough. For the Set class, it might seem necessary to store the hash value of the object that the
place holder stands for, but the hash value of the removed element is no more needed. It would be
needed only if a place holder is to be rehashed but linear probing makes that unnecessary. In other
open-address hashing schemes, the collision chain cannot be fixed anyway, so sharing the place
holder object is also possible for open-address hashing in general.

In general, using place holders tends to clutter up the code, because all procedures accessing the
representation must take place holders into account. Most often, it is also difficult to avoid runtime
overhead due to the contamination10. For example, accessing an element in an array by index is no
more efficient as soon as place holders are present. Sorting data structures pose the problem to
have a place holder to compare as the element it has been replaced for. When the sorting algorithm
copes with place holders, it may get extremely complicated.

8 This the maximal load factor.

9 Place holders are instances of DeletedObject.

10 There exist algorithms where place holders may improve efficiency, however. See [Mathieu88] for example. Place
holders may increase efficiency when their costs are smaller than the gains obtained by avoiding or postponing the
reorganization of the data structure.
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It is obvious that the place holder approach cannot provide robustness of iterators with respect to
insertions. Whenever an insertion takes place at an index less or equal the index describing the
iterator's current element, this index points to an array field already visited. For the example shown
in figure 4.2, the iterator has already yielded object "D", but because of the insertion of "C" at
index 2, "D" is incorrectly yielded a second time. As a consequence, it is considered an error to
insert elements into an OrdCollection while it is being iterated over.
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Fig. 4.2 OrdCollection: Iterating and Insertions

4.3.2 The Place Holder Approach for ObjList

ObjList is implemented as a doubly-linked list. The list nodes are instances of the regular class
ObjLink derived from Object. The list nodes can be instances of a class derived from ObjLink, and
may be endowed therefore with additional functionality by the client.

Since there was no semantic model for version 2.2, the behaviour of ObjList's iterator was
erroneously not considered robust with respect to insertions. But insertions in a doubly-linked list
do not pose problems for robust iteration: An iterator may be implemented such that insertions do
not require any actions on the side of the iterator, no matter whether pre- or postincrement iteration
is prescribed.

The problem lied in the discrepancy between implementation and expected semantics. The iterator
was implemented in postincrement style, but it was expected to have preincrement semantics. For
example, an iterator just having yielded the object "B" (see figure 4.3) will miss object "C" that has
been inserted after the access to "B" although "C" comes after "B" in the collection's sequence.
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Fig. 4.3 Iterating over a Doubly-Linked List
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The state model, registration, and unregistration are totally transparent to the client. The
registration/unregistration mechanism is realized at the abstract base classes Container5 and
Iterator, so all derivations inherit the mechanism.

Is such a complicated model needed? The answer is yes. The reason behind it has two important
aspects. First, the yield operation should be applicable arbitrarily many times without returning an
object once a yield operation returned null. So, at least two states are needed, namely ACTIVE and
TERMINATED. As a second reason, the time of registration or unregistration should be
independent of construction or destruction.

4.2 Preincrement and Postincrement Iteration

For each pass of an iteration, an iterator principally performs three actions:

a) It computes the subsequent value of the induction variable. For obvious reasons, it is called
the increment operation.

c) It tests for the end of sequence (the EOS operation).
b) It computes the next element to be yielded (the get operation).

The results of the get and the EOS operation are returned by the yield operation. If the increment
operation is executed before the get operation, the yield operation is preincrement. Analogously,
the opposite is a postincrement yield operation.

Further, yielding can be defined as terminating the iterator either early or late. Early termination
means that the iterator terminates during the yielding of the last element whereas late termination
takes place when the container has no more elements to be yielded at that moment. An analogous
distinction can be made for the initialization of an iterator, but this is irrelevant for the iterator
concept presented here.

4.3 Version 2.2 - The Place Holder Approach

This approach is a variation of lazy removal6 which is often used. If an element is to be removed
and there are currently no active iterators, the element is removed such that the data structure is
immediately updated. But if there are active iterators, only the pointer pointing to the element to be
removed is assigned to an object acting as a place holder.

A collection determines whether there are active iterators by simply counting them. The class
Collection maintains a variable that counts the active iterators. It is incremented on registration,
and decremented on unregistration. If this counter eventually drops to zero, the collection cleans up
its structure by removing the place holders and updating the data structure when necessary7. In
order to avoid cleanups if there are no place holders, Collection also counts the number of place
holders.

4.3.1 The Place Holder Approach for OrdCollection

The place holder approach works for OrdCollections, but has a disadvantage. Once a place holder
has been set, all operations have to take that into account. Especially the At operation returning the
element at the specified index must internally iterate until the number of elements (i.e. objects
which are not place holders) becomes equal to the index. Thus, the advantage of an array has
disappeared, and the run-time behaviour gets inacceptable if many At operations are invoked in
this situation.

5 in version 2.2 by the class Collection

6 In the literature, it is often called lazy deletion, for instance in [Mathieu88], but this is obviously not precise. In
C++, deletion has the meaning of destroying and deallocating an object.

7 For this purpose, Collection defines the hook method RemoveDeleted that is overridden by derived classes.
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An object-oriented framework like ET++ is large and comprises of complex interaction patterns.
These patterns can also vary over time because the network formed by the interacting objects is
often highly dynamic. The issue of robust iterators is therefore not trivial at all.

Experience with ET++ has shown that removals during iterations are common, but interestingly,
insertions during iterations are relatively rare. Thus, iterators that are at least robust with respect to
removals have the following essential advantages:

• The supplier of a framework with complex object interactions can save a lot of difficult
reasoning during design and implementation.

• There is no incentive to design and code around the problem: both supplier and client can
concentrate on more urgent things.

• Code duplication is avoided.
• A client less often faces the situation that an innocent looking piece of code does not work

because it causes unforeseen simultaneous iteration and modification in the framework.

4 Robust Iterators - Definitions and Implementations

This chapter shows how robust iterators are defined and implemented in the old version and the
new version for the data structures behind the classes OrdCollection, ObjList and Set. I call the
approach used in version 2.2 the place holder approach, and the approach used in version 3.0 the
adjustment approach.

Both the place holder and the adjustment approach rely on the fact that a container registers its
active iterators. The need for registration in conjunction with the semantics of the Iterator interface
lead to a particular state-transition model in version 2.2. This model has been retained for the new
version, so it is presented before the detailed description of the two approaches. Finally, it is shown
that copying the container or delaying operations is not safe.

4.1 Registering Robust Iterators and State-Transition Model

yield returns element

on yield entry
registration

yield returns nil or on destruction
unregistration

on destructionon construction

on yield entry and
no container bound

reset

TERMINATEDREADY

ACTIVE

Fig. 4.1 State-Transition Model of Iterators

An iterator is either READY, ACTIVE or TERMINATED. After an iterator is created, it is
READY. Upon the first yield request, it gets ACTIVE unless - as an exceptional case - the iterator
is not bound to the container because the latter has been deleted meanwhile. During this transition,
the registration at its underlying container takes place. The iterator remains active until it can no
more yield another object. During the following transition to TERMINATED, the iterator is
unregistered. See figure 4.1 for a graphical notation of this state-transition model. Note that an
iterator can run through all three states at one yield request.
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from the Quit operation. This is because the Close operation removes an element from the
container documents while there is an iterator active on it.

bool Document::Close()
{

bool canClose;

canClose= true;
if ( this->IsModified() )

canClose= this->AskUser();
if ( canClose )

this->application->RemoveDocument(this);
return canClose;

}

Ex. 3.1b Document's Close Operation

3.2 Networks of Interacting Objects

In an object-oriented application, many objects refer to each other. If the number of objects
referred to by some object varies over time, the referring object (Application)4 stores the references
in some data structure which is essentially a container. The referring object often provides
operations that affect the set of referenced objects (RemoveDocument), and the referring object
often has to iterate through the set of references (Quit) and invokes some operation (Close) on a
referenced object. This referenced object (Document), in turn, may invoke some operations that
directly or indirectly modify the set of references in the referring object: Iteration and modification
occur simultaneously!

This is typical for an object-oriented application. Its objects form a complicated network, and they
interact in various ways. The example in 3.1 stands for a common arrangement: Passing an event to
a set of event handlers eventually leads to the removal of the handler which reacted to the event. In
ET++, this and similar situations occur in several places.

3.3 Advantages of Robust Iterators

The problem of simultaneous iteration and modification can be solved either implicitly by the
provision of some robust iteration device, or ad-hoc where needed. All implicit variations
discussed in this work can be used ad-hoc, of course. Coding one of them will require substantial
effort until it works. Additionally, code duplication results when there are several places that need
such special treatment. It is clear that ad-hoc solutions are least desired and should hence be
avoided.

But first, a supplier of a framework has to find the actual and potential problems which the client is
likely to meet because of simultaneous iteration and modification. When done systematically, this
means to conduct a number of proves (even if this is accomplished in a rather informal way).
Except for trivial cases, this is impossible in practice. After the supplier has found some or all
potential problems, he must either solve or document them.

A framework is made to be customized. Even if some statement of correctness were possible, it had
limited value if the critical parts are not hidden or protected from the client. Due to the design, it
may be impossible to protect or to hide them. The framework may also be free of such problems
until the client customizes it. Then, he or she has to find the reason and a solution.

4 In this paragraph, the names in parentheses refer to the example in 3.1.
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3 Are Robust Iterators needed?

In the literature, many authors briefly address this question. Except for the developpers of ET++
[Weinand89] which coined the term, none of them states that there is a need for robust iterators.
Sometimes, it is suggested to iterate through a copy of the container to be modified when the
problem arises. MacApp 3.0 and Container 2 also provide robust iterators, but no argument is
made. See chapter 6 for more.

In this chapter, an example taken from ET++ is presented first to illustrate the problem. Then, the
problem is abstracted. A discussion follows where I argue that robust iterators are a necessity.

3.1 A Concrete Example Illustrating the Problem

In ET++, a running application is represented by a single global object (an instance of the class
Application). As most important functions, the application object handles user events that cannot
reasonably assigned to another event handling object in the system. Second, the application object
maintains a collection of open documents. Each of them maintains a list of its associated windows.

Application

Doc nDoc 1 Doc 2

documents

Fig. 3.1 Application, Document and Other Objects Form a Network

When the user selects "Quit", the application object invokes the Close operation of all documents.
If the document is really closed it asks the application to remove itself. Example 3.1a and 3.1b
describe the interaction in C++.

void Application::Quit()
{

Document *doc;
bool allClosed= true;
Iter next(this->documents);

while ( doc= (Document *) next() )
allClosed= allClosed && doc->Close();

if ( allClosed )
this->Terminate();

}

Document *Application::RemoveDocument(Document *doc)
{

return (Document *) documents->Remove(doc);
}

Ex. 3.1a Application's Quit and RemoveDocument Operation

Document's Close operation can also be invoked when only one document is to be closed (The
invoking object is typically an associated window of the document in this case). The Close method
as shown works for both cases. If there were no robust iterators, it would not work when invoked
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2.2.5.1 The Iter Construct

There is no need to delete iterators explicitly when using the Iter construct. Especially functions
and methods with several exit points profit from Iter. It lessens the potential of bugs and makes the
code more compact. Example 2.7 shows code which is equivalent to example 2.6. Iter takes
advantage of compiler-generated destruction of automatic variables, and of inlining.

void PrintAgendaOn(Collection *meetings, ostream *file)
{

Iter next(meetings);
Date *aDate;

while ( aDate= Guard(next(), Date) ) // operator() is inline
aDate->PrintAsStringOn(file);

// destructor of Iter executes here and deletes the iterator object
}

Ex. 2.7 The Convenience Construct Iter

2.2.5.2 The ForEach construct

It is very common to invoke an operation on all elements of a container. Using an internal iterator
is awkward in C++, and bulky code results. As a solution, there is the ForEach macro.
Syntactically, its usage looks like an the invokation of an internal iterator, but the macro eventually
uses an external iterator. The next example shows how ForEach is used:

void PrintAgendaOn(Collection *meetings, ostream *file)
{

meetings->ForEach(Date,PrintAsStringOn)(file);
}

Ex. 2.8 The Convenience Construct ForEach

2.3 Comments on Internal and External Iterators

The notion of an external iterator emphasizes that the driving loop is external to the iterator and is
executed in the context of the client code. Consequently, an internal iterator hosts and hides the
driving loop. The context of the client code has to be explicitly built and passed in a language like
C++ that does not allow for lexical closures3. In Smalltalk, this is a feature of the base language, so
internal iterators are easy to use there.

Booch [Booch87] introduces the term active instead of external, and passive instead of internal,
respectively. Speaking of an active iterator has an other meaning in this work (see chapter 4.1).

External iterators are more flexible and powerful than internal iterators. There are algorithms that
cannot be formulated by means of internal iterators. A good example is the two-way merge
[Berztiss88]. Due to the somewhat cumbersome usage of internal iterators in C++, external
iterators are the abstraction of choice.

The question about robust iteration arises for internal and external iterators. Internal iterators are
best implemented by means of external iterators if external iterators are available. If they are
robust, the internal iterators will automatically be robust as well.

3 Breuel [Breuel88] proposes, amongst others, to support lexical closures in C++.
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already in the Set. A Remove invocation will fail, if the specified object is not element of the
collection.

For sequencable collections, there are further operations like AddAt or RemoveAt. AddAt allows
the insertion of an element at a specified index, and RemoveAt removes the element at a specified
index.

2.2.3 Internal Iterators

The internal iterators Collect, Select and Detect are similar to those of the Smalltalk Collection
classes. The actions to be executed for each element are specified in a function of appropriate type.
This function which is the body of the iteration (iteration body) is passed when invoking one of the
internal iteration operations.

How internal iterators are used is shown in example 2.5 for Collect. Collect returns a collection of
the same type as the receiver: the iteration body is applied to each element of the receiver, and its
value becomes an element of the result.

Object *Defer(Object *, Object *element, void *arguments)
{

// the first argument is the receiver collection: ignored here
int deferment= *(int *) arguments; // no type check possible
Date *aDate= Guard(element, Date);
return new Date(aDate->DayNumber() + deferment);

}

Collection *meetings= ...; // a Collection of Dates
int deferment= 7;
Collection *deferredMeetings= meetings->Collect(Defer, &deferment);

Ex. 2.5 The Internal Iterator Collect

2.2.4 External Iterators

External iterators are class objects of their own. The most important operation yield is declared as
Object *Iterator::operator()(). On each invocation, it returns (or yields) another element of the
collection. If there are no more elements, null is returned. An iterator can be reset by Reset, so
another enumeration can be done.

void PrintAgendaOn(Collection *meetings, ostream *file)
{

Iterator *next;
Date *aDate;

next= meetings->MakeIterator(); // creates a new iterator
while ( aDate= Guard((*next)(), Date) )

aDate->PrintAsStringOn(file);
delete next; // iterator has to be deleted

}

Ex. 2.6 Using an External Iterator

2.2.5 More Convenient Iterators

The only purpose of the two constructs presented next is to provide some syntactic sugar. Despite
their simplicity, they are important and heavily used.
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Object *op= new Date(666); Date *aDate;
aDate= Guard(op, Date); // type-safe down cast using Guard

if ( op == 0 || (op != 0 && op->IsKindOf(Meta(Date))) )
aDate= (Date *) op;

else
Error("not a Date"); // run-time error

Ex. 2.4 Type-Safe Down Cast with Guard and Equivalent Explicit Formulation

2.2 Hierarchy and Functionality

The container classes of ET++ are very similar to those in the NIHCL2 library [Gorlen90,
Gorlen87]. Both C++ libraries were inspired by Smalltalk-80 [Goldberg83]. However, the
hierarchy of version 2.2 is closer to Smalltalk's hierarchy than that of version 3.0. See also
Appendix A for the container class hierarchies and Appendix B for the interface declarations of the
abstract class Collection.

SeqCollection models sequenceable collections that have a well-defined sequence order. This
implies that every element can be accessed by an index. OrdCollection is an array-based
implementation, and ObjList is an implementation using doubly-linked lists. The list nodes are
instances of the class ObjLink. The class SortedObjList sorts its elements by immediately inserting
an element at the right place.

The class Set is a set-like collection. There cannot be two elements in a Set that are equal in the
sense of object equality. Set's behaviour is implemented by linear probing, a variant of open-
address hashing. The class IdSet (IdentitySet) explicitly uses object identity instead of object
equality.

For the class Dictionary which is a Set of Associations in version 2.2, a corresponding variant
IdDictionary (IdentityDictionary) is provided. In version 3.0, the client interface of Dictionary was
slightly changed and is now derived from the newly introduced abstract class Container. See 6.1
for more details.

2.2.1 Inquiries

The inquiry operations provided by a collection consists of:

• determining the number of elements (Size)
• test for inclusion (Find and FindPtr),
• counting the number of occurrences (OccurrencesOf, OccurrencesOfPtr)
• internal iterators (Detect, Select, Collect)
• creation of external iterators (MakeIterator, MakeReversedIterator)

Some of the operations have two variants. The trailing 'Ptr' in the name indicates that the operation
uses identity instead of equality. This distinction is important because there may be elements in a
container which are equal but not identical.

2.2.2 Modifications

The Add operation inserts an object. An element is removed by either the Remove or the
RemovePtr operation. Here again, Remove uses object equality to locate the element, and
RemovePtr uses object identity. All modification operations indicate their success or failure with
their return value. The Set's Add operation will fail, for instance, if the object to be inserted is

2 Formerly known as OOPS library.
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class Date : public Object {
public:

Date(u_long aDayNumber) { dayNumber= aDayNumber; };
u_long Hash() {...}; // overridden
bool IsEqual(Object *anObject); // --- " ----
int Compare(Object *anObject); // --- " ----
int DayOfWeek() {...};
void PrintAsStringOn(ostream *file) {...};

protected:
u_long dayNumber;

};

Ex. 2.1 The Example Class Date Overrides the Methods of Object's Comparison Protocol

Example 2.2a shows an implementation for IsEqual, example 2.2b one for Compare.

bool Date::IsEqual(Object *anObject)
{

return (anObject->IsKindOf(Date)) &&
(this->DayNumber() == ((Date *) anObject)->DayNumber())

}

Ex. 2.2b An Example Implementation of IsEqual

int Date::Compare(Object *anObject)
{

Date *aDate= Guard(anObject, Date);
return (aDate->DayNumber()) - (this->DayNumber());

}

Ex. 2.2b An Example Implementation of Compare

2.1.2 Class Descriptors and Type-Safe Down Casts

Since C++ provides no type information at run time, ET++ defines a class descriptor concept. For
each class, there is a descriptor which is an instance of the class Class. Every object can be asked
for its class descriptor by the operation IsA. If two objects are of the same class, they refer to the
same class descriptor. Further, it is possible to ask an object whether it is instance of a certain class
by the operation IsKindOf.

Object *op= ...; Object *qp= ...;
if ( op->IsA() == qp->IsA() )

...; // *op and *qp are members of the same class
if ( op->IsKindOf(qp->IsA()) )

...; // *op is instance of *qp's class

Ex. 2.3 Using Class Descriptors

The Guard macro is used for type-safe down casts. It allows to safely recover a more derived type
for a pointer value. Example 2.4 shows the usage and the semantics of the Guard construct. Type-
safe down casts are particularly useful if the container classes, as in ET++, are heterogenous.
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• Implement the solution.
• Since the implementation would require considerable changes in the implementation of the

container classes, repair wrong inheritance relationships and inconsistent interfaces. Also
improve efficiency when possible.

• Test the collection classes thoroughly and check what impact the new classes have on client
code. Compare the performance between the old classes and the new classes.

This work emphasizes on the conceptual part. In the last chapter, there is a short report on the other
goals.

2 Overview on ET++ Containers

This chapter gives an overview on the container classes and related concepts found in ET++. Some
terminology used in the sequel is also introduced. This chapter is intended for a reader not familiar
with ET++.

2.1 General Approach

There are different general approaches for building container classes in a language, as C++, with
static type checking. Heterogenous containers inhibit from static type checking, whereas type-
specific and generic homogenous containers do not. Homogenous containers can be further divided
into type-specific and generic containers.

A heterogenous container relies on some protocol which all element classes inherit from a common
base class. In ET++, the operations of the container classes declare the element type as a pointer to
the class Object, "the least common divisor". As a consequence, the more derived type of an
element is lost and has to be recovered when retrieving an element. Furthermore, an ET++
container cannot deal neither with the basic types of C++ (like int, char, float) nor with classes not
derived from Object. Examples for such non-regular classes are Point or Rectangle.

Another possibility is to build a type-specific container class whose interface declares the desired
base type of the elements. Depending on the design of the container classes found in the library, the
type-specific container reuses them by means of inheritance or composition. The library classes are
especially designed for this purpose in order to minimize the additionally needed code. This
approach is employed by the Container 2.0 library, and by the container classes in [Budd91], for
instance.

When the language supports genericity, generic container classes take advantage of this feature.
The element type is not specified, but a formal argument. When instantiating a generic class, the
element type is passed as an actual argument. C++ calls its genericity construct template. ET++
does not use templates to stay independent from compiler versions.

2.1.1 Object Equality and Identity

Some of Object's operations are essential for the container classes. Determining equality of two
objects is done by the virtual operation IsEqual. This concept is called object equality. In contrast,
there is no operation for object identity: Two objects are considered identical if their addresses are
equal. The virtual Compare operation returns an integer describing the ordering between the two
involved objects. Object also introduces the Hash operation which returns an unsigned long
integer. This value is used by containers whose implementation is based on a hashing algorithm.
The class Date in example 2.1 overrides these three methods.



Robust Iterators in ET++
Thomas Kofler

UBILAB Union Bank of Switzerland
Bahnhofsstr. 45
CH-8021 Zurich

e-mail: kofler@ZH010.ubs.ubs.arcom.ch

June 1992

Abstract

Container classes and iterators operating on them are a common feature of object-oriented class
libaries. Most often, the question whether modifications of a container during an iteration should
be allowed, is answered with no. This work, in contrast, justifies why it should be allowed and
supported, at least in comprehensive C++ class libraries like ET++. It is further shown how the
concept of a robust iterator can be reasonably defined and implemented for well-kown data
structures. In this course, special attention is paid to hashing algorithms, in particular linear
probing. Feasible and efficient solutions are described and evaluated.
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1 Introduction

Many object-oriented class libraries have a container concept, and often also an iterator concept.
ET++, a portable application framework written in C++, is no exception. ET++ provides so-called
robust iterators that allow modification of the underlying container during an iteration in a
consistent and well-defined way. Beside ET++, this outstanding feature is offered by the
commercial C++ libraries MacApp 3.0 [Apple92], which has been recently released, and by
Container 2 [Glocken90].

Up to version 2.2 of ET++, robust iterators have been limited to removals, but the version 3.0 being
currently in preparation to be released support insertions as well. How containers and iterators are
defined and implemented in both version is the main subject of this report. An answer why robust
iterators are considered important is given. Efficiency is also addressed, because "collections are
heavily used system-level classes ..." [Cox87:146].

ET++ is a single-rooted class library with the universal class called Object1, and does not use
multiple inheritance. More material on ET++ can be found in publications by its developpers
[Gamma89, Gamma91, Weinand88, Weinand89, Weinand91]. Further work is referenced in the
text.

This project started with an attempt to develop graph classes which are suitable to build a graph
editor framework for ET++. Since the ET++ container classes provided robust iterators, the
question arose whether robust iterators are also possible for graphs. In the ET++ container classes,
the problem of simultaneous iteration and insertions was unsolved, however. Since I wanted to use
some of the container classes as building blocks, I evaluated design and implementation of these
classes and came up with an idea that also allows for insertions. So, the following goals were
established:

• Refine the idea and develop an efficient solution for the ET++ container classes. As an
important constraint, the existing client interfaces should not change whenever possible, and
existing code should not be broken.

1 All classes derived from Object are called regular. A regular object is instance of a regular class.


